Multidisciplinary Teaming Studies

Thomas A. Zang Head, MDO Branch

ETPS

System Thinking

Background

- MDO research applications at NASA LaRC involve multi-disciplinary, multiorganizational research teams
- Many participants on these MDO teams came from a background in which they worked individually or with 1 or 2 collaborators
- Most researchers are very uncomfortable depending on someone else in order to get their job done
- Most branches are reluctant to play a supporting role in a project
- During 1996-98 MDOB facilitated 2 studies of the issues facing such teams
 - Engineering Team Dynamics
 - Systems Thinking Applied to Multidisciplinary Teams
- 3 papers on the results were presented at the 1998 MA&O Symposium

Team Study Participants & Sponsors

- Engineering Team Dynamics
 - Funding provided by 4 Divisions (Aero & Gas Dynamics, Fluid Mechanics & Acoustics, Flight Dynamics, Materials)
 - Surveys covered participants from 6 Divisions (4 above plus Aerospace Systems Analysis, Space Systems Concepts)
- System Thinking
 - Consulting fees for Innovation Associates covered by Research & Technology Group
 - Study participants came from 4 Divisions (Aero & Gas Dynamics, Fluid Mechanics & Acoustics,
 Flight Dynamics, Structures)

Engineering Team Study

- Clemson University received a NASA Multidisciplinary Design and Analysis Fellowship Program award for 1994-97
- Prof. Ron Nowaczyk of Clemson did the academic team studies under this grant
- Prof. Nowaczyk spent a sabbatical at LaRC from 9/96 to 8/97 studying LaRC engineering teams
- Phase I (9/96 3/97) determined the primary factors affecting engineering teams
- Phase II (4/97 8/97) developed and validated a survey instrument as well as an intervention manual
- Subsequently, the survey was implemented as a web-based form
- This study was coordinated by Thomas Zang

Observations from Team Dynamics Study

- Virtually all of the research underlying current theories of teams is based on teams of managers performing management tasks
- Only 1 major study (1965) has focused on teams of engineers performing engineering tasks
- This LaRC study indicated that engineering teams at NASA Langley, as opposed to management teams in general
 - are more likely to have the necessary skills to perform the task
 - have greater difficulty in deciding the approach to the task

Engineering Team Performance Scale

- The result of this Engineering Team Dynamics study was the Engineering Team Performance Scale (ETPS)
- This is a survey instrument to evaluate the effectiveness of a team
- The ETPS was developed after the characteristics of successful and unsuccessful teams were identified
- The survey contains 29 items based on 7 dimensions
 - Team Approach to Problem or Task
 - Team Leadership
 - Task Coordination
 - Organizational Support
 - Communication & Feedback
 - Team Roles & Norms
 - Personal Performance on Team

2 of 4 Questions from "Organizational Support for the Team"

1	15. What was the role of the team sponsor?
	The team sponsor appeared to discourage team activities or did not believe in the team mission.
	\bigcirc The team sponsor provided little visible support and viewed the team primarily as "another one of his/her many responsibilities."
	 The team sponsor's level of oversight did not hinder nor enhance the team's activities.
	\bigcirc The team sponsor took a "hands-off" approach with the team unless asked to intervene on behalf of the team.
	 The team sponsor was clearly a "champion" for the team and its work.
16. What was the team's perception of its value within the organization?	
	Team members held differing opinions about the team's value to the organizational mission.
	Most team members felt the team's contribution to the organizational mission would be minimal.
	 Aspects of the team's work appeared to be important within segments of the organization.
	\bigcirc Most team members could see that the team's activities were important to the organization overall.
	 The team was of "one mind" in that its work was important to the organizational mission.

Scoring & Use of the ETPS

• Calculate the Mean Rating per Item

Successful
Team

5 or less "1& 2" Ratings
18 or more "4 & 5" Ratings

10 or more "1& 2" Ratings12 or less "4 & 5" Ratings

 An intervention manual has been developed that contains recommended exercises to improve weak dimensions identified by the ETPS

Comments on Team Dynamics Study

- Engineering teams, as opposed to management teams
 - are more likely to have the necessary skills to perform the task
 - have greater difficulty in deciding the approach to the task
- The ETPS is a reliable instrument for assessing the performance and identifying areas of improvement
- The ETPS can be filled out on the web in 15-20 minutes
- The ETPS can be used during a team's lifetime and/or at its conclusion

Systems Thinking Study Objectives

- NASA Langley's Research & Technology Group made a significant investment in having 300 of the staff trained in Systems Thinking in 1995-97
- Multidisciplinary Team objectives of study
 - Identify barriers to success for multidiscipline research teams at NASA Langley
 - Develop recommendations that will help multidiscipline teams to be more effective
- System Thinking training objectives of study
 - Develop a Langley-based application of systems thinking to a real, practical, and significant issue
 - Document the effort in a case study to be available for training and a reference for future efforts
- This study was led by Jean-François Barthelemy

Systems Thinking Overview

- A discipline for seeing structures (the patterns and connections) underlying seemingly diverse personal, organizational and societal issues.
- Helps us understand and describe complex issues.
- Points to higher leverage solutions to problems.
- The harder you push, the harder the system pushes back.
- The easy way out usually leads back in.
- Small changes can produce big results -- but the areas of highest leverage are often the least obvious.
- There is no blame.

LaRC Study Approach

- Select recent multidiscipline teams with a "rich" history
 - Airframe Noise Team (ANT)
 - Longitudinal Controls Alternatives Project (LCAP)
 - MDO Detailed Planning Team
- Interview cross-section of team members to determine influential factors affecting success
- Identify key variables and structural elements affecting team performance
- Distinguish between internal and external dynamics
- Seek causal relationships between key variables that supported the outcomes
- Diagram the causal links and identify archetypical structures that suggest potential interventions
- Identify high-leverage interventions to achieve desired results (long-lasting, self-sustaining, involving choice)

The Whole Internal Story?

Teaming Studies

Willingness to be a Team Player

Willingness to be a Team Player Key Structures and Interventions

Key Structures

- multidisciplinary research often requires willingness to subordinate to team objectives
- personal success has generally been associated with sophisticated discipline expertise and individual accomplishments

Potential Interventions

- link personal success to team success and team participation
 - strengthen structures that support desire to do multidiscipline work
 - rewards, visibility, technical challenges (goals and objectives)
 - emphasize personal benefits of team efforts
 - collaborative synergy, personal satisfaction, new knowledge / capability
 - weaken structures that support single discipline work

Summary of Systems Thinking Study

- Systems Thinking proved a valuable tool in identifying the many complex forces affecting multidisciplinary research teams at LaRC
- The whole story involves over a dozen interconnected diagrams
- The dominant archetype of Internal Dynamics is "Limits to Growth"
- The dominant archetype of External Dynamics is "Success to the Successful"
- System Thinking principles were used to select interventions most appropriate to the archetypes

Status

Engineering Team Dynamics

- ETPS was applied to the HSCT4 Team and lessons learned were applied to ELVIS
- ELVIS will be taking ETPS shortly
- Efforts to enlist LaRC Office of Human Resources in this tool have so far been unsuccessful

• System Thinking

- Research & Technology Group senior management was briefed on the whole package, including the recommendations
- The individual participants continue to benefit from their deeper understanding of multidisciplinary team issues
- This study remains the only broad application of System Thinking made at LaRC

Note

 The Department of the Navy has made extensive use of System Thinking (and Innovation Associates, now part of A. D. Little) for their knowledge management initiative

Teaming Studies References

- Barthelemy, J.-F. M.; Jones, K. M.; Silcox, R. J.; Silva, W. A.; Waszak, M. R.; and Nowaczyk, R. H.: "Charting Multidisciplinary Team External Dynamics Using A Systems Thinking Approach," AIAA Paper 98-4939, 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, Sept. 2-4, 1998.
- Waszak, M. R., Barthelemy, J.-F., Jones, K. M., Silcox, R. J., Silva, W. A and Nowaczyk, R.H., "Modeling and Analysis of Multidiscipline Research Teams at NASA Langley Research Center: A Systems Thinking Approach," AIAA Paper 98-4940, 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, Sept. 2-4, 1998.
- Nowaczyk, Ronald H.; and Zang, T. A.: "Factors Related to Successful Engineering Team Design," AIAA Paper 98-4941, 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, Sept. 2-4, 1998.